The Vaurien was designed by Jean Jacques HERBULOT and was adopted as an International Class by ISAF in 1957.
INDEX

INTRODUCTION

PART I – ADMINISTRATION
SECTION A – GENERAL
SECTION B – BOAT ELIGIBILITY

PART II – REQUIREMENTS AND LIMITATIONS
SECTION C – CONDITIONS FOR RACING
SECTION D – HULL
SECTION E – HULL APPENDAGES
SECTION F – RIG
SECTION G – SAILS

PART III – APPENDICES
SECTION H – BUOYANCY TEST
SECTION I – TEMPLATES
INTRODUCTION

This introduction only provides an informal background about the VAURIEN class. The International Vaurien Class Rules proper begin on the next page.

The VAURIEN is a One-Design class designed by Jean-Jacques Herbulot in 1950. It became an International Class in 1957.

VAURIEN hulls, hull appendages, rigs and sails are measurement or manufacturing controlled.

VAURIEN hulls, hull appendages, rigs and sails may, after having left the manufacturer, only be altered to the extent permitted in Section C of the class rules.

Owners and crew should be aware that compliance with rules in Section C is NOT checked as part of the certification process.

Rules regulating the use of equipment during a race are contained in Section C of these class rules, in ERS Part I and in the Racing Rules of Sailing.

VAURIEN Class permits In House Certification (IHC) of appendages, rigs and sails ; for hulls IVCA may give authorization in special cases.

Builders are strongly advised to clarify any doubt about these class rules before starting construction to avoid the possibility of boats being subsequently considered not complying.

PLEASE REMEMBER:

THESE RULES ARE CLOSED CLASS RULES WHERE IF IT DOES NOT SPECIFICALLY SAY THAT YOU MAY THEN YOU SHALL NOT.

COMPONENTS, AND THEIR USE, ARE DEFINED BY THEIR DESCRIPTION.
Section A – General

A.1 LANGUAGE
A.1.1 The official language of the class is English and in case of dispute over translation the English text shall prevail.
A.1.2 The word “shall” is mandatory and the word “may” is permissive.

A.2 ABBREVIATIONS
A.2.1 ISAF International Sailing Federation
MNA ISAF Member National Authority
IVCA International Vaurien Class Association
CIV Comité International du Vaurien
NVCA National Vaurien Class Association
ERS Equipment Rules of Sailing
RRS Racing Rules of Sailing
MF Measurement Form

A.3 AUTHORITIES
A.3.1 The international authority of the class is the ISAF who has delegated to IVCA the administration of the class; IVCA shall co-operate with ISAF in all matters concerning these class rules.
A.3.2 Neither the ISAF, an MNA, the IVCA, an NVCA, a certification authority, or an official measurer are under any legal responsibility in respect of these class rules and the accuracy of measurement, nor can any claims arising from these be entertained.
A.3.3 Notwithstanding anything contained herein, the certification authority has the authority to withdraw a certificate and shall do so on the request of the ISAF.

A.4 ADMINISTRATION OF THE CLASS
A.4.1 The Class is administered by the IVCA who may delegate part or all its functions to MNAs or NVCAs, as stated in these Class Rules
A.4.2 In countries where there is no MNA, or the MNA does not wish to administer the class, its functions, as stated in these Class Rules, shall be carried out by the IVCA which may delegate the administration to a NVCA.

A.5 ISAF RULES
A.5.1 These Class Rules shall be read in conjunction with the ERS.
A.5.2 Except where used in headings, when a term is printed in “bold” the definitions in the ERS apply and when a term is printed in “italics” the definitions in the RRS shall apply
A.5.3 These Rules are complementary to the Building Specification Plans and Measurement Form.

A.6 CLASS RULES VARIATIONS
A.6.1 At Class Events – see RRS 89.1.d) – ISAF Regulation 26.5(f) applies. At all other events RRS 86 applies.

A.7 CLASS RULES AMENDMENTS
A.7.1 Amendments to these Class Rules are subjected to the approval of the ISAF in accordance with the ISAF Regulations.

A.8 CLASS RULES INTERPRETATIONS
A.8.1 Interpretations of these Class Rules shall be made in accordance with the ISAF Regulations.

A.9 INTERNATIONAL CLASS FEE AND ISAF BUILDING PLAQUE
A.9.1 The licensed hull builder shall pay the International Class Fee to IVCA that shall convey to ISAF part of it.
A.9.2 ISAF shall, after having received the International Class Fee for the hull, send the ISAF Building Plaque to IVCA that shall forward it to the licensed hull builder accompanied by a measurement form.

A.10 SAIL NUMBERS
A.10.1 Sail numbers shall correspond to the number shown on to the ISAF International Class building plaque except where stated otherwise in these class rules and shall be issued in consecutive order starting from 1.

A.11 HULL CERTIFICATION
A.11.1 A certificate shall record the following information:
(a) Class
(b) Certification authority
(c) Sail number issued by the certification authority
(d) Owner
(e) Hull identification
(f) Builder details
(g) Date of issue of initial certificate
(h) Date of issue of certificate

A.12 INITIAL HULL CERTIFICATION
A.12.1 For a certificate to be issued to a hull not previously certified:
(a) Certification control shall be carried out by an official measurer who shall complete the appropriate documentation.
(b) The documentation and certification fee if required shall be sent to the certification authority.
Upon receipt of a satisfactorily completed documentation and certification fee, if required, the certification authority may issue a certificate.

A.13 VALIDITY OF CERTIFICATE
A.13.1 A hull certificate becomes invalid upon:
 (a) the change to any items recorded on the hull certificate as required under A.11.,
 (b) the date of expiry,
 (c) withdrawal by the certification authority,
 (d) the issue of a new certificate.

A.14 HULL RE-CERTIFICATION
A.14.1 The certification authority may issue a certificate to a previously certified hull:
 (a) when it is invalidated under A.13.1 (a) or (b), after receipt of the old certificate, and certification fee if required,
 (b) when it is invalidated under A.13.1 (c), at its discretion,
 (c) in other cases, by application of the procedure in A.12.

A.15 RETENTION OF CERTIFICATION DOCUMENTATION
A.15.1 The certification authority shall:
 (a) retain the original documentation upon which the current certificate is based,
 (b) upon request, transfer this documentation to the new certification authority if the hull is exported.
Section B – Boat Eligibility

For a boat to be eligible for racing, it shall comply with the rules in this section.

B.1 CLASS RULES AND CERTIFICATION
B.1.1 The boat shall:
(a) be in compliance with the class rules,
(b) have a valid hull certificate,
(c) have valid certification marks as required.

B.2 BUOYANCY CHECKS
B.2.1 The hull certificate shall carry a satisfactorily buoyancy check confirmation.
B.2.2 A Race Committee may require that a boat shall pass a buoyancy test in accordance with Appendix H1.

B.3 CLASS ASSOCIATION MARKINGS
B.3.1 A valid Class Association marking, as required by NVCA or the IVCA shall be affixed to the hull in a conspicuous position.
B.3.2 Sails may carry a Class Association Sail Label or button.
PART II – REQUIREMENTS AND LIMITATIONS

The crew and the boat shall comply with the rules in Part II when Racing. In case of conflict Section C shall prevail.

The rules in Part II are closed class rules. Certification control and equipment inspection shall be carried out in accordance with the ERS except where varied in this Part.

Section C – Conditions for Racing

C.1 GENERAL

C.1.1 RULES
(a) RRS 50.4 shall not apply,
(b) The ERS Part I – Use of Equipment shall apply.

C.2 CREW

C.2.1 LIMITATIONS
(a) The crew shall consist of two persons,
(b) During an event, a crew member shall not be substituted unless authorized by the Race Committee,
(c) Junior crew shall be less than 19 years old before the 1st of January on the year of the competition.

C.3 PERSONAL EQUIPMENT

C.3.1 MANDATORY
(a) The boat shall be equipped with personal buoyancy for each crew member to the minimum standard ISO 12402-5 (Level 50), EN 393 :1995 (CE 50 Newtons), or USCG Type III, or AUS PFD 1. Alternative or additional standards may be prescribed in the Notice of Race or sailing instructions,

C.3.2 TOTAL WEIGHT
The total weight of worn clothing and equipment shall comply with current version of RRS rule 43 measured according to RRS, appendix H.

C.4 ADVERTISING

C.4.1 LIMITATIONS
Advertising shall only be displayed in accordance with the ISAF Advertising Code (see ISAF Regulation 20).

C.5 PORTABLE EQUIPMENT

C.5.1 MANDATORY
(a) FOR USE
(1) One hand bailer or bucket.
(b) NOT FOR USE
 (1) Towing rope minimum 12m long of not less than 8mm in diameter attached to hull and to anchor when the latter is required by the Race Instructions.
 (2) One paddle minimum weight 0.250kg and a minimum length of 800mm.
 (3) One anchor of not less than 2kg in weight, when required by the Race Instructions.

C.5.2 OPTIONAL
(a) FOR USE
 (1) Electronic or mechanical timing devices.
 (2) One magnetic or electronic compass.
 (3) Water bottle holder.
 (4) Non electronic wind indicators.
(b) NOT FOR USE
 (1) Mooring line.
 (2) Spare parts such as blocks, shackles, ropes, etc.

C.6 BOAT

C.6.1 WEIGHT
No weight limitations apply to the fully rigged boat.

C.6.2 BUOYANCY
The owner is responsible at all times for the buoyancy and for ensuring that at intervals of not more than 12 months the buoyancy is tested according to Appendix H and declaration endorsed by an equipment inspector. If in doubt regarding compliance with B.2.1 an equipment inspector may order a buoyancy test, afterwards checking the buoyancy tanks for significant leakage. If the buoyancy is deemed unsatisfactory, the certificate shall be withdrawn and not return until satisfactory remedial measures have been taken.

C.6.3 FITTINGS
(a) The overall numbers of sheaves, cleats, hooks, swivels and levers in the boat is limited as follows:

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheaves, single or assembled in blocks</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Cleats and clam cleats</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>if a ratchet block is used the number of Cleats/clams</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Hooks</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Swivels</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lever</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
(b) Thimbles, rings, eye plates and fairleads are not restricted. The
distribution of these fittings within the permitted mandatory and
optional equipment is optional unless stated otherwise in these
class rules.
(c) Sheaves as mentioned in C.6.3 (a) comprise any fitting or device
including a rotating part used as a sheave.

C.7 HULL
C.7.1 MODIFICATIONS AND MAINTENANCE AND REPAIR
(a) The parts of the hull listed in D.1 as supplied by the licensed
builder shall not be altered in any way except as permitted by these
class rules,
(b) Routine maintenance such as small repairs, painting, sanding and
polishing is permitted without re-measurement and re-certification,
(c) If any hull is repaired in any other way than described in C.7.1 (b)
an official measurer shall verify that the external shape comply
with these class rules and that no substantial advantage has been
gained as a result of the repair. The official measurer shall note it
on the certificate and describe the details of the repair,
(d) Non-slip material, tape and low-friction material not exceeding 4mm
in thickness may be applied to the hull,
(e) Local reinforcement for fittings and fastenings are permitted,
(f) Holes not bigger than necessary for the installation of fittings in the
hull is permitted provided that the result is watertight.

C.7.2 FITTINGS
(a) USE
The type and dimensions of the fittings are mandatory or optional
as stated in these class rules. The following restrictions apply:
(1) Hand hole covers and drainage plugs shall be kept in place at
all times when racing.
(2) Fairleads for the headsail sheets shall be fixed to the hull. A
piece of any material maximum 10mm thick may be used
between fairlead and hull.
(3) Cleats for the headsail sheets may be placed on brackets
placed inside the side deck.
(4) Cleats for all sheets shall be fixed in the hull.

C.8 HULL APPENDAGES
C.8.1 MODIFICATIONS AND MAINTENANCE AND REPAIR
(a) Routine maintenance such as small repairs, painting, sanding and
polishing is permitted without re-measurement and re-certification.

C.8.2 LIMITATIONS
(a) Only one centreboard and one rudder shall be used during an
event, except when a hull appendage has been lost or damaged
beyond repair. A replacement shall be approved by the Race
Committee.
C.8.3 CENTREBOARD
(a) USE
(1) The centreboard shall be led up or down as wished by the crew.
(2) The centreboard may be hold in the centreboard case by any wedges or any shock cord.

C.8.4 RUDDER AND TILLER
(a) USE
(1) The rudder blade shall be in its fully lowered position when racing.
(2) Type and materials of tiller and tiller extension are optional.
(3) The rudder shall be fitted to the hull in such a manner that it will not detach from the hull if the boat capsizes.
(4) The distance between the transom and the rudder head when set in the rudder fittings as shown in C.8.4.1 shall be between 30mm and 40mm.
(5) Any part of the rudder blade shall be within a circle with centre at the intersection point of the water line and the leading edge of the rudder blade and a maximum radius of 684mm as shown on diagram C.8.4.1.
(6) The position of the rudder is optional as shown in C.8.4.1

C.8.4.1 RUDDER POSITION ON HULL

C.9 RIG
C.9.1 MODIFICATIONS AND MAINTENANCE
(a) Routine maintenance such as changing lines and/or cables is permitted without re-measurement and re-certification.
C.9.2 LIMITATIONS
(a) Only one set of spars and standing rigging shall be used during an event, except when an item has been lost or damaged beyond repair. A replacement shall be approved by the Race Committee.

C.9.3 MAST
(a) USE
(1) The spar shall be stepped in the mast step in such a way that the heel shall not be capable of moving more than 5mm in any direction.
(2) Rotating masts are prohibited.
(3) The fore and aft bend of the mast spar may be controlled at the mast partners by any system.
(4) The mast heel position shall not be adjusted when racing.
(5) Spreaders, if used, may be adjustable but shall not be adjusted while racing.
(6) The Mast Datum Point shall be situated below the upper face of the mast thwart.

C.9.4 BOOM
(a) DIMENSIONS

<table>
<thead>
<tr>
<th>Outer Point Distance</th>
<th>Minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2200 mm</td>
</tr>
</tbody>
</table>

(b) USE
(1) The boom spar shall be inserted into the gooseneck fixed to the mast.
(2) The boom spar shall be set in accordance with ERS B.7.1

C.9.5 SPINNAKER POLE
(a) USE
(1) When in use the spar shall be inserted into the fitting fixed to the fore face of the mast for the spinnaker or into the fitting to keep the headsail in position.
(2) Only one spinnaker pole may be carried aboard when racing.

C.9.6 STANDING RIGGING
(a) USE
(1) Rigging links and rigging screws shall not be adjusted while racing.
(2) The shrouds shall not be adjusted while racing.
(3) Shock-cord may be fitted to the forestay.
(4) The forestay under tension shall prevent the mast from disengaging from the mast partners. To meet this requirement the widest section of the mast shall be within the mast partners when the mast rakes under its own weight and the forestay comes under tension.
C.9.7 RUNNING RIGGING

(a) USE

(1) No running rigging shall go inside the mast. For the purpose of this rule the groove or track for the mainsail is considered as being outside the mast.

(2) The mainsail and headsail halyards when tensioned, shall be secured to the hull or to the mast below the lower limit mark.

(3) The way the mainsail, headsail and spinnaker sheets are led is optional.

(4) The spinnaker pole topping lift and downhaul may be led as wished by the crew.

(5) The kicking strap may be led as wished by the crew.

(6) The mainsail clewouthaul and cunningham control may be led as wished by the crew.

C.10 SAILS

C.10.1 MODIFICATIONS, MAINTENANCE AND REPAIR

(a) Sails shall not be altered in any way except as permitted by these class rules.

(b) Routine maintenance such as sewing, patching and mending is permitted without re-measurement and re-certification.

C.10.2 LIMITATIONS

(a) Not more than one mainsail, one headsail and one spinnaker shall be used during an event, except when a sail has been lost or damaged beyond repair. A replacement shall be approved by the Race Committee.

C.10.3 MAINSAIL

(a) IDENTIFICATION

(1) The national letters and sail numbers shall comply with the RRS except where prescribed otherwise in these class rules.

(2) Competitors may use the sail number of any hull owned by them, on any boat chartered by them.

(b) USE

(1) The sail shall be hoisted on a halyard. The arrangement shall permit hoisting and lowering of the sail at sea whilst afloat.

(2) The sail shall be set in accordance with ERS B.9.1.

(3) Luff and foot bolt ropes or slides shall be inside the spar grooves or tracks.

(4) Battens shall be fitted into their respective batten pockets when racing, except in the case of accidental loss.
C.10.4 HEADSAIL
 (a) USE
 (1) The headsail shall be hoisted and lowered on a halyard. The arrangement shall permit the hoisting and lowering of the sail at sea whilst afloat.

C.10.5 SPINNAKER
 (a) IDENTIFICATION
 The sail numbers shall comply with the RRS Appendix G.
 (b) USE
 1) The spinnaker shall be hoisted on a halyard. The arrangement shall permit the hoisting and lowering of the sail at sea whilst afloat.
Section D – Hull

D.1 PARTS
D.1.1 MANDATORY
 (a) Hull shell,
 (b) Transom
 (c) Keel
 (d) Skeg
 (e) Foredeck with coamings
 (f) Buoyancy Tanks
 (g) Gunwale Rubbing Strakes
 (h) Side decks
 (i) Bulkheads
 (j) Mast thwart,
 (k) Centreboard thwart,
 (l) Centreboard case

D.1.2 OPTIONAL
 (a) Side benches,
 (b) Bilge keels.

D.2 GENERAL
D.2.1 RULES
 The hull shall comply with the class rules in force at the time of initial certification.

D.2.2 CERTIFICATION
 (a) See Rule A.12..
 (b) An ISAF In-house Certification (IHC) Authorizing Authority may appoint one or more Internal Official Measurers at a builder to measure and certify hulls produced by that builder in accordance with the ISAF IHC guidelines.

D.2.3 DEFINITIONS
 (a) HULL DATUM POINT (HDP)
 The hull datum point is the intersection of the hull centre plane at the transom external surface with the underside of the hull surface both extended as necessary as shown in diagram D.2.3.1.
 (b) FORWARD MEASURING POINT 1 (FMP1)
 The forward measuring point 1 (FMP1) is the sheer point on the stem as shown in diagram D.2.3.1.
 (c) FORWARD MEASURING POINT 2 (FMP2)
The forward measuring point 2 (FMP2) is the intersection of the **hull** centre plane with the lowest point of the stem, excluding the external **keel**, as shown in diagram D.2.3.1.

(d) The **waterline** is the line formed by the intersection of the outside of the **hull** and the horizontal projection of the line formed by the **hull datum point** and FMP2.

(e) The baseline shall be on the projection of the **hull** centre plane connecting the following points:
 - Point at 155mm below the **hull datum point**,
 - Point at 155mm below **FMP2**.

(f) All measurements shall be taken parallel or perpendicular to the baseline.

D.2.3.1 HULL DATUM POINTS DIAGRAM

D.2.4 IDENTIFICATION

(a) The **hull** shall carry the ISAF plaque permanently fixed on the starboard internal face of the transom,

(b) The **hull** shall carry, indelibly marked on the port side of the centreboard case, the sail number in figures not less than 25mm high.

(c) The **hull** shall carry the label of the current year, as defined by the NVCA regulations, permanently fixed on the port side of the transom.

D.2.5 BUILDERS

(a) The **hull** shall be built by a builder licensed by IVCA,

(b) The **hull** may be built by bona fide amateur builders licensed by IVCA,

(c) All moulds shall be approved by IVCA after consultation with the MNA and the NVCA,

(d) Templates used for **certification control** of **hull** shall be approved by the IVCA.

D.3 HULL SHELL

D.3.1 MATERIALS

(a) The **hull** shell shall be built from one or more of the following options:
 - wood and/or plywood,
- Glass Reinforced Plastics (GRP), composed of E-glass fibre for reinforcement and of Polyester or Polyvinyl resin as laminating agent,
- composites combining GRP as defined above for skin and for core Polyvinyl chloride (PVC) closed-cell foam of nominal density not less than 65 kg/m3 or Polyurethane or balsa wood, or a combination of these.

D.3.2 CONSTRUCTION

(a) The external shape of the **hull** shall comply with these **class rules** and Measurement Diagrams.

(b) The external **hull** includes:
 (i) bottom panels, **keel**, skeg and optional bilge keels,
 (ii) side panels and rubbing strakes,
 (iii) transom.

(c) Bottom surface shall not have any inflection in the curvature,

(d) Side panels may have curvature inflections between sections 0 and 2,

(e) A straight edge 680mm +/-25mm long sliding along the sheerline and chine shall not show hollows against the measured surface,

(f) Rounding off of exposed and internal edges of the **hull** is permitted to a maximum radius of 10mm or the angle may be cut with chamfer of a maximum of 14mm distance between edges, as shown in Diagram D.3.2.1. Angles between **keel** and **skeg** can be filled as shown in Diagram D.3.2.2.,

(g) False and/or double bottom are prohibited. For the effect of this rule sandwich type construction not thicker than 15mm shall not be considered double bottom.
D.4 EXTERNAL KEEL, SKEG AND BILGE KEELS

D.4.1 CONSTRUCTION DETAILS
External keel and skeg may be faired over a maximum length of 120mm from the aft most side as for fig D.4.4.1. Altering the horizontal thickness of the keel at the junction with the stem is permitted.

D.4.2 EXTERNAL KEEL DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Width at intersection with the hull shell</td>
<td>52mm</td>
<td>95mm</td>
</tr>
<tr>
<td>2 Width of keel bottom side</td>
<td>32mm</td>
<td></td>
</tr>
<tr>
<td>3 Height</td>
<td>28mm</td>
<td></td>
</tr>
</tbody>
</table>

D.4.3 Bilge keels are optional. If used, they shall be positioned between section 2 and 4 and under the optional outer floor battens. They may be faired over a maximum length of 120mm from the aft most side and fore most side.

D.4.4 The dimensions of the skeg shall not exceed those given in diagram D.4.4.1 and shall be measured with a template as specified in Section I. A maximum of 10mm tolerance is permitted.
D.5 TRANSOM AND STEM

D.5.1 DIMENSIONS

(a) The bottom shape of the transom shall conform to diagram D.5.1.1 and shall be measured with the transom bottom shape template as specified in Section I. Measurements in the diagram include minimum and maximum.

D.5.1.1 - TRANSOM DIAGRAM

(b) The shape of the stem at FMP1 and FMP2 shall be checked with the template as shown in Section I. Templates shall touch the hull on both sides.

D.5.2 DRAINAGE PORTS

The transom shall have a maximum of two drainage ports in which case they shall be equidistant from the transom centreline with a maximum tolerance of 2mm. They shall have a minimum total combined area of 1950 mm\(^2\) and be either:

(a) Circular, as close as possible to the bottom panel, or,

(b) Of any shape with no dimension exceeding 120 mm in any direction and not less than 15 mm from the outside of the bottom skin.
If the boat is fitted with self-bailer/s the drainage port/s shall have a minimum section area of 760 mm2.

D.6 DECKS

D.6.1 MATERIALS
(a) The decks shall be built from materials as specified in D.3.1.

D.6.2 CONSTRUCTION
(a) The foredeck shall contain the coamings,
(b) The foredeck may be prolonged to include the mast thwart,
(c) No part of the foredeck shall fall below a straight line connecting sheerlines athwartship,
(d) Side decks edges may be rounded athwartship.

D.7 BUOYANCY TANKS

D.7.1 MATERIALS
(a) The buoyancy tanks shall be built from materials as specified in D.3.1 and shall comply with ISO 12217-3 Annex C.

D.7.2 CONSTRUCTION
(a) Boats shall be able to withstand a buoyancy test as described in section H1.
(b) Built-in buoyancy compartments shall be placed under the side decks and the foredeck equally distributed on each side of the boat's centreline and fore and aft. There shall be not less than three compartments with a total minimum volume of 360 litres and the smallest compartment shall have a volume no less than 100 litres. They may have drain watertight holes with detachable plugs secured to the hull against loss.
(c) Hulls manufactured without built-in buoyancy compartments are accepted with inflatable air bags as flotation devices. These shall additionally comply with ISO 12217-3 Annex D. The largest air tank shall not be included as a flotation element. They shall be not less than five and each shall give a minimum positive buoyancy of 350 Newtons. They shall be firmly secured to the hull under the side decks and the foredeck and they shall be equipped with a non-return valve.
(d) The compulsory secondary buoyancy shall be provided by the use of a minimum of 100 litres of rigid foam divided into not less than three parts of approximately the same volume and securely attached to the hull, one forward of the mast and the other two aft of the mast, distributed equally on each side of the boat's centreline.
(e) Built-in buoyancy compartments shall have inspection holes.
D.8 GUNWALE RUBBING STRAKES

D.8.1 MATERIALS
(a) The gunwale rubbing strakes shall be built from materials as specified in D.3.1.

D.8.2 CONSTRUCTION
(a) The rubbing strake shall run unbroken on each gunwale,
(b) The dimensions of the rubbing strakes shall not exceed those given in diagram D.8.2.1 and shall be checked with the template shown in section I.

D.8.2.1 – RUBBING STRAKE DIAGRAM

D.9 BULKHEAD

D.9.1 CONSTRUCTION
In GRP built hulls, the bulkhead shall separate the buoyancy tanks into three compartments.

D.10 ASSEMBLED HULL

D.10.1 FITTINGS
(a) MANDATORY
The following fittings shall be positioned in accordance with the Diagrams:
(1) One forestay fitting.
(2) Two shroud plates.
for the following fittings the position is optional:
(3) Mast step.
(4) Two gudgeons or two pintles.
(5) Toe straps not capable of extending outboard.
(6) A locking device for preventing the rudder to be dislodged from gudgeons.
(7) Mainsail sheet blocks, fairleads and cleats.
(8) Headsail sheet blocks, fairleads and cleats.
(9) Spinnaker sheet fairleads, blocks and cleats.
(10) One inspection hole in each buoyancy compartment, provided that the watertight integrity of the buoyancy compartment is maintained and covers are capable of resisting accidental dislodgement, except for buoyancy bags.

(b) OPTIONAL

(1) Halyard tensioners.

(2) **Mainsail** cunningham blocks, fairleads and cleats.

(3) **Headsail** cunningham blocks, fairleads and cleats.

(4) **Headsail** barber hauler fairleads, blocks and cleats.

(5) Tiller lock.

(6) Stowage clips for paddle, spinnaker pole, sail bags and other equipment.

(7) Two self bailers which may discharge through the **hull** shell.

(8) One magnetic or electronic compass.

(9) Draining holes in buoyancy compartments, provided that the watertight integrity of the buoyancy compartment is maintained and plugs are capable of resisting accidental dislodgement, except for buoyancy bags.

(10) Two spinnaker bags.

(11) Kicking strap adjustment devices.

(12) Any sealing strips for the centreboard slot.

(13) Any adjusting system for the centreboard position at top and/or bottom of the centreboard case.

(14) Laths placed inside the centreboard case to control the lateral play of the centreboard.

(15) Hinged covers or other devices for closing the draining ports or drains in the transom.

D.10.2 DIMENSIONS

(a) GENERAL

The sections shall be taken as vertical, transverse planes at the following positions:

Section 0 : at FMP2

Section 2 : at 2720mm from **hull datum point** (HDP)

Section 4 : at 1360mm from **hull datum point**

Section 6 : at **hull datum point**

(b) HULL MEASUREMENTS

<table>
<thead>
<tr>
<th></th>
<th>Hull length</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beam of hull, excluding rubbing strakes and fittings, between sheerlines:</td>
<td>4060mm</td>
<td>4100mm</td>
</tr>
<tr>
<td>2</td>
<td>at section 2</td>
<td>1262mm</td>
<td>1282mm</td>
</tr>
<tr>
<td>3</td>
<td>at section 4</td>
<td>1444mm</td>
<td>1464mm</td>
</tr>
<tr>
<td>4</td>
<td>at section 6</td>
<td>1030mm</td>
<td>1050mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>minimum</td>
<td>maximum</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>Longitudinal distance from hull datum point to forward side of mast notch in mast thwart</td>
<td>2705mm</td>
<td>2735mm</td>
</tr>
<tr>
<td>6</td>
<td>Longitudinal dimension of mast spar thwart forward of notch</td>
<td>70mm</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Longitudinal distance between forward side of notch in mast thwart and centre of hole in forestay</td>
<td>1175mm</td>
<td>1185mm</td>
</tr>
<tr>
<td>8</td>
<td>Longitudinal distance from hull datum point to centre of shroud plate hole</td>
<td>2250mm</td>
<td>2320mm</td>
</tr>
<tr>
<td></td>
<td>Gunwale rubbing strakes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Horizontal</td>
<td>60mm</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Vertical</td>
<td>60mm</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Internal diameter of buoyancy compartment holes</td>
<td>150mm</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Internal diameter of buoyancy compartment draining holes</td>
<td>25mm</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Distance between hull datum point and intersection of Coamings</td>
<td>3380mm</td>
<td>3420mm</td>
</tr>
<tr>
<td>14</td>
<td>Distance between hull datum point and aft side of centreboard case</td>
<td>2065mm</td>
<td>2095mm</td>
</tr>
<tr>
<td>15</td>
<td>Internal length of centreboard slot</td>
<td>360mm</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Width of centreboard slot</td>
<td>28mm</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Height of upper edge of centreboard case and upper side of main thwart at boat centreline above external keel</td>
<td>324mm</td>
<td>334mm</td>
</tr>
<tr>
<td>18</td>
<td>Distance between transom and aft end of coamings</td>
<td>2550mm</td>
<td>2650mm</td>
</tr>
<tr>
<td></td>
<td>Width of deck excluding thickness of rubbing strakes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>at section 6</td>
<td>120mm</td>
<td>140mm</td>
</tr>
<tr>
<td>20</td>
<td>at section 4</td>
<td>150mm</td>
<td>170mm</td>
</tr>
<tr>
<td>21</td>
<td>at section 2</td>
<td>180mm</td>
<td>200mm</td>
</tr>
<tr>
<td>22</td>
<td>Width of notch in mast thwart</td>
<td>70mm</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Distance of any holes in mast thwart from centreline</td>
<td>35mm</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Depth of mast thwart at notch from sheerline</td>
<td>11mm</td>
<td>21mm</td>
</tr>
<tr>
<td>25</td>
<td>Length of mast thwart aft of the forward leading edge of the mast notch</td>
<td>100mm</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Length of main thwart</td>
<td>150mm</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Width of side benches</td>
<td>150mm</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Side benches rounding off radius</td>
<td>150mm</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Length of side benches</td>
<td>1060mm</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Depth of side benches from main thwart upper face</td>
<td>25mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>minimum</td>
<td>maximum</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>31</td>
<td>Height of coamings from deck at boats centreline</td>
<td>20mm</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Height of coamings at 50 mm from sheerline</td>
<td>5mm</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Distance from HDP to FMP2</td>
<td>4005mm</td>
<td>4045mm</td>
</tr>
<tr>
<td>34</td>
<td>Horizontal distance between FMP1 and FMP 2</td>
<td>50mm</td>
<td>55mm</td>
</tr>
<tr>
<td>35</td>
<td>Vertical distance between FMP1 and FMP 2</td>
<td>505mm</td>
<td>515mm</td>
</tr>
<tr>
<td>36</td>
<td>Distance between aft of centreboard slot and HDP</td>
<td>2015mm</td>
<td>2045mm</td>
</tr>
<tr>
<td>37</td>
<td>Vertical distance from baseline to bottom line at section 2</td>
<td>60mm</td>
<td>80mm</td>
</tr>
<tr>
<td>38</td>
<td>Vertical distance from baseline to bottom line at section 4</td>
<td>58mm</td>
<td>68mm</td>
</tr>
<tr>
<td>39</td>
<td>Hull beam excluding rubbing strakes and Fittings, between chines :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>at section 2</td>
<td>866mm</td>
<td>886mm</td>
</tr>
<tr>
<td>41</td>
<td>at section 4</td>
<td>1144mm</td>
<td>1164mm</td>
</tr>
<tr>
<td>42</td>
<td>at section 6</td>
<td>862mm</td>
<td>882mm</td>
</tr>
<tr>
<td>43</td>
<td>Vertical distance of any point of the bottom at section 2 from the reference line from chine to chine</td>
<td></td>
<td>10mm</td>
</tr>
<tr>
<td>44</td>
<td>Height of chines above keel at transom</td>
<td>93mm</td>
<td>103mm</td>
</tr>
<tr>
<td>45</td>
<td>Distance between chine and sheerline at section 6</td>
<td>224mm</td>
<td>234mm</td>
</tr>
<tr>
<td>46</td>
<td>Distance between chine and sheerline at section 4</td>
<td>427mm</td>
<td>437mm</td>
</tr>
<tr>
<td>47</td>
<td>Distance between chine and sheerline at section 2</td>
<td>524mm</td>
<td>534mm</td>
</tr>
<tr>
<td>48</td>
<td>Side panels at section 6,4 and 2 shall be straight with a tolerance of</td>
<td></td>
<td>5mm</td>
</tr>
<tr>
<td>49</td>
<td>Tolerance of planarity of transom</td>
<td></td>
<td>5mm</td>
</tr>
</tbody>
</table>

D.10.3 WEIGHT

<table>
<thead>
<tr>
<th>Hull weight</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
</table>

The hull shall be weighed without any appendages, rigging, spars, sails as well as movable fittings or apparatuses, fixed fittings may be left in place.

D.10.4 HULL CORRECTOR WEIGHTS

(a) A maximum of two corrector weights shall be permanently fastened to the hull transom when the hull weight is less than the minimum requirement.
(b) The total weight of such corrector weights shall not exceed 3 kg. The corrector weights shall be securely fastened to the upper inside of the transom.
D.10.5 DIAGRAM 1
Section E – Hull Appendages

E.1 PARTS
E.1.1 MANDATORY
(a) Centreboard,
(b) Rudder.

E.2 GENERAL
E.2.1 RULES
(a) Hull appendages shall comply with the class rules in force at the time of certification.

E.2.2 CERTIFICATION
(a) The official measurer shall certify hull appendages and shall sign and date the certification mark,
(b) An ISAF In-House Certification (IHC) Authorising Authority may appoint one or more Internal Official Measurers at a manufacturer to measure and certify hull appendages produced by this manufacturer, in accordance to ISAF IHC guidelines.

E.2.3 MANUFACTURERS
No licence is required.

E.3 CENTREBOARD
E.3.1 MATERIALS
(a) The centreboard shall be of materials as specified for the hull in D.3.1.
(b) No metal inserts are permitted.

E.3.2 FITTINGS
(a) MANDATORY
 (1) Any handhold.
 (2) A centreboard stopper made of any material situated at a maximum of 30mm from the trailing edge as shown in E.3.3.1.
(b) OPTIONAL
 (1) Any lath and/or strips may be fitted to the upper part of the centreboard.

E.3.3 DIMENSIONS
(a) The dimensions of the centreboard shall not exceed those given on the diagram E.3.3.1.
E.3.3.1. CENTREBOARD DIAGRAM

(b) The thickness of the centreboard shall not vary more than 1mm, and shall be of a minimum thickness of 18mm except that the edges may be faired over a maximum distance of 80mm from the trailing, leading and lower edges as shown in E.3.6.1.

(c) The centreboard shall not be pierced by lightening holes.

(d) The centreboard trailing edge shall be straight with a maximum deviation of an edge from a straight line of 10mm.

E.3.7 WEIGHT

The centreboard with fittings shall have positive buoyancy when immersed in fresh water.

E.4 RUDDER BLADE, RUDDER HEAD AND TILLER

E.4.1 MATERIALS

(a) The rudder blade shall be of materials as specified for the hull in D.3.1.

(b) The rudder head and tiller extension may be of any material.

E.4.2 CONSTRUCTION

(a) The rudder blade may be able to pivot around a horizontal axis in which case it shall include any system to lift the blade from its lowered position.

(b) The tiller extension may be of any type.

E.4.3 FITTINGS

(a) MANDATORY

Any two gudgeons or two pintles.

E.4.4 DIMENSIONS

(a) The dimensions of the rudder blade shall not exceed those given on the diagram E.4.4.1.

(b) The thickness of the rudder blade shall not vary more than 1mm and shall be of a minimum thickness of 18mm. except that the
edges may be faired over a maximum distance of 80mm from the trailing, lower and leading edges as showing in Figure E.4.4.1.

E.4.4.1. RUDDER DIAGRAM
Section F – Rig

F.1 PARTS
F.1.1 MANDATORY
(a) Mast
(b) Boom
(c) Standing rigging
(d) Running rigging

F.1.2 OPTIONAL
(a) Spinnaker pole

F.2 GENERAL
F.2.1 RULES
(a) The spars and their fittings shall comply with the class rules in force at the time of certification of the spar,
(b) The standing and running rigging shall comply with these class rules.

F.2.2 MODIFICATIONS AND REPAIRS
(a) Spars shall not be altered in any way except as permitted by these class rules.

F.2.3 CERTIFICATION
(a) The official measurer shall certify spars and shall sign and date the certification mark.
(b) An ISAF In-house Certification (IHC) Authorizing Authority may appoint one or more Internal Official Measurers at a manufacturer to measure and certify spars produced by that manufacturer in accordance with the ISAF IHC guidelines.
(c) No certification of standing and running rigging is required.

F.2.4 DEFINITIONS
(a) LIMIT MARKS
Limit marks shall be painted or indelibly marked on the spars in a contrasting colour 10mm minimum wide. Tape is not permitted.
 The mast datum point is the lower edge of band n°1.
 Lower limit mark is band n°2.
 Upper limit mark is band n°3.

F.2.5 MANUFACTURER
(a) No licence is required.

F.3 MAST
F.3.1 MATERIALS
(a) The mast spar shall be made of aluminium alloy.
F.3.2 CONSTRUCTION
(a) The spar extrusion shall include a fixed sail groove or a fixed track which may not be integral with the spar but shall be of the same material,
(b) Cleats shall not be fixed on the mast spar above the lower limit mark,
(c) Fairleads or conduits may be used for guiding halyards, but they shall not be placed higher than 3400mm above the mast datum point,
(d) The mast spar shall be of constant cross-section throughout its length except between the upper edge of the lower point and a point no more than 300mm above it.

F.3.3 FITTINGS
(a) MANDATORY
 (1) Mast head fitting.
 (2) Shroud tangs.
 (3) Mainsail halyard sheave.
 (4) Headsail halyard sheave.
 (5) Gooseneck.
 (6) Kicking strap attachments.
 (7) Heel fitting.
(b) OPTIONAL
 (1) Spinnaker halyard sheave or fairlead.
 (2) Spinnaker pole fitting.
 (3) Spinnaker pole lift block or fairlead.
 (4) Spinnaker pole downhaul block or fairlead.
 (5) Two spreaders.
 (6) One mechanical wind indicator.
 (7) Compass bracket.
 (8) Fairleads for guiding running rigging lines.
 (9) Wedges and/or chocks for positioning the mast between the partners.
 (10) Multiple hooks for main halyard.
 (11) Electronic or mechanical compass.
 (12) Timing device.

F.3.4 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mast length</td>
<td></td>
<td>6300mm</td>
</tr>
<tr>
<td>Mast spar cross section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>between the mast top point and the mast heel point excluding fittings and the groove opening section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Fore and aft</td>
<td>46mm</td>
<td></td>
</tr>
<tr>
<td>Transverse</td>
<td>46mm</td>
<td></td>
</tr>
<tr>
<td>2 Mast Datum Point to lower point</td>
<td>605mm</td>
<td>607mm</td>
</tr>
<tr>
<td>5 lower point to upper point</td>
<td></td>
<td>5100mm</td>
</tr>
<tr>
<td>6 Lower Point to lowest point of the groove</td>
<td>300mm</td>
<td></td>
</tr>
<tr>
<td>7 Forestay and shroud height</td>
<td>4106mm</td>
<td>4149mm</td>
</tr>
<tr>
<td>8 Distance of spinnaker halyard turning point from fore face of mast</td>
<td>100mm</td>
<td></td>
</tr>
<tr>
<td>9 Spinnaker pole fitting length from foreface of mast</td>
<td>40mm</td>
<td></td>
</tr>
<tr>
<td>10 Height of spinnaker halyard turning point from mast datum point</td>
<td>4130mm</td>
<td>4222mm</td>
</tr>
<tr>
<td>11 Spreader height</td>
<td>2179mm</td>
<td>2233mm</td>
</tr>
</tbody>
</table>

F.3.5 WEIGHT

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast weight</td>
<td>7kg</td>
<td></td>
</tr>
</tbody>
</table>

The weight of the **mast** shall include rigging specified under F.6.2, F.7.2 (a)(1), F.7.2(a)(4), F.7.2(b)(5), F.7.2(b)(7), F.7.2 (b)(8) and fittings specified under F.3.3, but excluding wind indicator, compass or timing device.

If the **mast** weight is less than the minimum required, a maximum of 0.5Kg of corrector weights shall be permanently fastened to the **mast** at its centre of gravity.
F.4 **BOOM**

F.4.1 **MATERIALS**
(a) The **spar** shall be of aluminium alloy.

F.4.2 **CONSTRUCTION**
(a) The **spar** extrusion shall include a fixed sail groove or track which may not be integral with the **spar** but shall be of the same material.

F.4.3 **FITTINGS**
(a) **MANDATORY**
 (1) One single sheave mainsheet block with attachments.
 (2) Any clew outhaul blocks and any attachments.
 (3) Kicking strap fitting.
 (4) Gooseneck attachment.
(b) **OPTIONAL**
 (1) Not more than two wire strops for mainsheet blocks.
 (2) Spinnaker pole stowage fittings.
 (3) Two single sheaves or a double sheave block for mainsheet with attachment fittings.
 (4) A system to adjust mainsail clew position.
 (5) Fitting to attach mainsail tack to boom.
 (6) The **boom** may be protected in the area where it touches the shrouds by pieces of any material and dimensions, provided they do not alter the stiffness of the boom spar.
 (7) The use of shock cord to hold out the boom is permitted provided it does not alter the sail plan.

F.4.4 **DIMENSIONS**

<table>
<thead>
<tr>
<th>Boom Spar Cross Sections:</th>
<th>minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Vertical including groove or track</td>
<td></td>
<td>90mm</td>
</tr>
<tr>
<td>2 Transverse</td>
<td></td>
<td>32mm</td>
</tr>
<tr>
<td>3 Boom Length</td>
<td></td>
<td>2600mm</td>
</tr>
</tbody>
</table>

F.4.5 **WEIGHT**
No weight limitations apply.

F.4.6 **BOOM DIAGRAM**
F.5 SPINNAKER POLE
F.5.2 MATERIALS
 (a) The spar shall be made of aluminium alloy.
F.5.3 FITTINGS
 (a) OPTIONAL
 1. One hook at each end.
 2. Fittings approximately at the mid-point for attachment for lift and
downhaul lines.
 3. A fixed line between the fittings described in F.5.3 (a) (1), which
may incorporate knots, toggles or short tubes.
F.5.4 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Spinnaker pole cross section at mid length</td>
<td>25 mm</td>
<td></td>
</tr>
<tr>
<td>2 Spinnaker pole length including hooks</td>
<td></td>
<td>1750 mm</td>
</tr>
</tbody>
</table>

F.6 STANDING RIGGING
F.6.1 MATERIALS
 (a) The standing rigging shall be of stainless steel.
F.6.2 CONSTRUCTION
 (a) MANDATORY
 (1) A forestay.
 (2) Two shrouds.
F.6.3 FITTINGS
 (a) MANDATORY
 (1) Forestay rigging link.
 (2) Shroud rigging links.
F.6.4 DIMENSIONS
 (a)

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Forestay diameter</td>
<td>2,5 mm</td>
<td></td>
</tr>
<tr>
<td>2 Shroud diameter</td>
<td>2,5 mm</td>
<td></td>
</tr>
</tbody>
</table>

 (b) No length limitations apply.
F.6.5 WEIGHT
 No weight limitations apply.

F.7 RUNNING RIGGING
F.7.1 MATERIALS
 (a) Materials are optional
F.7.2 CONSTRUCTION
(a) MANDATORY
(1) Mainsail halyard.
(2) Mainsail sheet.
(3) Kicking strap.
(4) Headsail halyard.
(5) Headsail sheets.
(b) OPTIONAL
(1) Mainsail cunningham line.
(2) Mainsail outhaul.
(3) Headsail cunningham line.
(4) Single line headsail barber haulers.
(5) Spinnaker halyard.
(6) Spinnaker sheets.
(7) Spinnaker pole lift.
(8) Spinnaker pole downhaul.
(9) Spinnaker barber haulers.

F.7.3 FITTINGS
(a) MANDATORY
(1) Mainsail sheet cleat or ratchet block.
(2) Headsail sheets fairleads and cleats.
(b) OPTIONAL
(1) One eye or single sheave in each headsail barber hauler to run on headsail sheet.
(2) One eye or single sheave in each spinnaker barber hauler to run on spinnaker sheet.
(3) Spinnaker sheets fairleads and cleats.

F.7.4 DIMENSIONS
No length limitations apply

F.7.5 WEIGHT
No weight limitations apply.
Section G – Sails

G.1 PARTS
G.1.1 MANDATORY
(a) Mainsail
(b) Headsail
G.1.2 OPTIONAL
(a) Spinnaker.

G.2 GENERAL
G.2.1 RULES
(a) Sails shall comply with the class rules in force at time of certification.

G.2.2 CERTIFICATION
(a) The official measurer shall certify mainsails and headsails in the tack and spinnakers in the head and shall sign and date the certification mark.
(b) An ISAF In-house Certification (IHC) Authorizing Authority may appoint one or more Internal Official Measurers at a sailmaker to measure and certify sails produced by that manufacturer in accordance with the ISAF IHC guidelines.

G.2.3 SAILMAKER
(a) No licence is required.
(b) The date of manufacture, type and weight in g/m² of the body of the sail shall be indelibly marked near the head point by the sailmaker together with the date and his signature or stamp.

G.3 MAINSAIL
G.3.1 IDENTIFICATION
(a) The class insignia shall conform to the dimensions and requirements as detailed in the diagram contained in G.3.1.1 with a tolerance of +/-10 mm, be of a contrasting colour, and be placed in accordance with the following provisions:
 (1) The corners may be rounded off.
 (2) It shall be placed back to back with the "flag" pointing to the leech, above the three-quarter leech point batten pocket and not more than 100mm from its upper edge.
G.3.2 MATERIALS
(a) The ply fibres shall be made of polyester,
(b) Battens may be made of any material,
(c) The boltrope shall be made of synthetic fibre and not be shockcord.

G.3.3 CONSTRUCTION
(a) The construction shall be: soft sail, single ply sail,
(b) The body of the sail shall consist of the same woven ply throughout, except for the window and the foot panel,
(c) The sail shall have a minimum of three and a maximum of four batten pockets in the leech,
(d) The following are permitted: stitching, glues, tapes, bolt ropes, three corner eyes, headboard with fixings, cunningham eye or attachment, cunningham rope, batten pocket patches, batten pocket elastic, batten pocket end caps, mast and boom slides, one window, tell tales, sail shape indicator stripes, tensioning devices at leech end of the two upper battens, leech lines,
(e) The leech shall not extend aft of straight lines between:
 (1) the aft head point and the intersection of the leech and the upper edge of the nearest batten pocket.
 (2) the intersection of the leech and the lower edge of a batten pocket and the intersection of the leech and the upper edge of an adjacent batten pocket below.
 (3) the clew point and the intersection of the leech and the lower edge of the nearest batten pocket.
(f) The **leech** shall be edged by a **tabling**.

G.3.4 DIMENSIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Leech length</td>
<td>5100 mm</td>
<td>5350 mm</td>
</tr>
<tr>
<td>2 Extension of headboard from head point</td>
<td>150 mm</td>
<td></td>
</tr>
<tr>
<td>3 Three-quarter width</td>
<td>1050 mm</td>
<td></td>
</tr>
<tr>
<td>4 Half width</td>
<td>1640 mm</td>
<td></td>
</tr>
<tr>
<td>5 Primary reinforcement</td>
<td>305 mm</td>
<td></td>
</tr>
<tr>
<td>Secondary reinforcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Flutter patch</td>
<td>120 mm</td>
<td></td>
</tr>
<tr>
<td>7 Chafing patch</td>
<td>300 mm</td>
<td></td>
</tr>
<tr>
<td>8 Batten pocket patch</td>
<td>175 mm</td>
<td></td>
</tr>
<tr>
<td>9 Any other secondary reinforcements</td>
<td>915 mm</td>
<td></td>
</tr>
<tr>
<td>10 Tabling width</td>
<td>35 mm</td>
<td></td>
</tr>
<tr>
<td>11 Distance from clew point to foot bolt rope</td>
<td>300 mm</td>
<td></td>
</tr>
<tr>
<td>12 Distance from tack point to foot bolt rope</td>
<td>300 mm</td>
<td></td>
</tr>
<tr>
<td>13 Diameter of bolt rope</td>
<td>6 mm</td>
<td></td>
</tr>
<tr>
<td>14 Seam width</td>
<td>30 mm</td>
<td></td>
</tr>
<tr>
<td>15 If batten pocket overlaps a panel seam the panel seam width</td>
<td>50 mm</td>
<td></td>
</tr>
<tr>
<td>16 Window area</td>
<td>0.15 m²</td>
<td></td>
</tr>
<tr>
<td>17 Window to sail edge</td>
<td>150 mm</td>
<td></td>
</tr>
<tr>
<td>Batten pocket length:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Outside quarter leech point batten pocket and half leech point batten pocket</td>
<td>700 mm</td>
<td></td>
</tr>
<tr>
<td>19 Outside batten pocket width</td>
<td>50 mm</td>
<td></td>
</tr>
<tr>
<td>20 Head point to intersection of leech and centreline of upper leech point batten pocket</td>
<td>450 mm</td>
<td>500 mm</td>
</tr>
<tr>
<td>21 Head point to intersection of luff and centreline of upper leech point batten pocket</td>
<td>350 mm</td>
<td></td>
</tr>
<tr>
<td>22 Head point to intersection of luff and centreline of three-quarter leech point batten pocket</td>
<td>1200 mm</td>
<td>1250 mm</td>
</tr>
<tr>
<td>23 Distance from the intersection of the centreline of the batten pockets and their closest leech points</td>
<td>40 mm</td>
<td></td>
</tr>
</tbody>
</table>
G.3.5 MAINSAIL DIAGRAM

Upper Leech Point

Three-quarter Leech Point

Half Leech Point

Quarter Leech Point

max 40

max 700

max 1050

max 350

max 1640

5100–5350

450–500

1200–1250

max 700

Vaurien Class Rules 2009
G.4 HEADSAIL

G.4.1 MATERIALS
(a) The ply fibres shall consist of polyester,
(b) The luff wire shall be made of a minimum of 7 strand stainless steel wire.

G.4.2 CONSTRUCTION
(a) The construction shall be: soft sail, single ply sail,
(b) The body of the sail shall consist of the same woven ply throughout, except for the window,
(c) The following are permitted: stitching, glues, tapes, corner eyes, hanks, tell tales, flutter patches, one window, sail shape indicator stripes, leech lines,
(d) The leech shall not extend beyond a straight line from the aft head point to the clew point,
(e) The leech and the foot shall be edged by a tabling.

G.4.3 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Luff length</td>
<td></td>
<td>3750 mm</td>
</tr>
<tr>
<td>2 Leech length</td>
<td></td>
<td>3400 mm</td>
</tr>
<tr>
<td>3 Foot length</td>
<td></td>
<td>1650 mm</td>
</tr>
<tr>
<td>4 Half width</td>
<td></td>
<td>850 mm</td>
</tr>
<tr>
<td>5 Top width</td>
<td></td>
<td>50 mm</td>
</tr>
<tr>
<td>6 Foot irregularity</td>
<td></td>
<td>10 mm</td>
</tr>
<tr>
<td>7 Primary reinforcement</td>
<td></td>
<td>260 mm</td>
</tr>
<tr>
<td>Secondary reinforcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Chafing patch</td>
<td></td>
<td>300 mm</td>
</tr>
<tr>
<td>9 Any other secondary reinforcements</td>
<td></td>
<td>780 mm</td>
</tr>
<tr>
<td>10 Window area</td>
<td></td>
<td>0.15 m²</td>
</tr>
<tr>
<td>11 Window to sail edge</td>
<td></td>
<td>150 mm</td>
</tr>
<tr>
<td>12 Luff wire diameter</td>
<td></td>
<td>2.5 mm</td>
</tr>
<tr>
<td>13 Seam width</td>
<td></td>
<td>30 mm</td>
</tr>
<tr>
<td>14 Tabling width</td>
<td></td>
<td>35 mm</td>
</tr>
</tbody>
</table>
G.5 SPINNAKER

G.5.1 MATERIALS
(a) The ply fibres shall consist of polyester or nylon.

G.5.2 CONSTRUCTION
(a) The construction shall be: soft sail, single ply sail,
(b) The body of the sail shall consist of the same woven ply throughout,
(c) The following are permitted: stitching, glues, tapes, corner eyes, recovery line eyes, tell tales,
(d) The leeches and the foot shall be edged by a tabling.

G.5.3 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Leech lengths</td>
<td>4000 mm</td>
<td></td>
</tr>
<tr>
<td>2 Foot length</td>
<td>2400 mm</td>
<td></td>
</tr>
<tr>
<td>3 Half width</td>
<td>2650 mm</td>
<td></td>
</tr>
<tr>
<td>4 Primary reinforcements</td>
<td>260 mm</td>
<td></td>
</tr>
<tr>
<td>5 Secondary reinforcements</td>
<td>780 mm</td>
<td></td>
</tr>
<tr>
<td>6 Tabling width</td>
<td>30 mm</td>
<td></td>
</tr>
<tr>
<td>7 Seam width</td>
<td>30 mm</td>
<td></td>
</tr>
</tbody>
</table>
PART III – APPENDICES

The rules in Part III are **closed class rules**. Measurement shall be carried out in accordance with the ERS except where varied in this Part.

Section H – Buoyancy test

H.1 BUOYANCY TEST

The measurer shall witness a buoyancy test as follows:

- the boat shall be swamped with water and with weights of not less than 100kg total placed at midship,
- the boat shall float with the gunwales clear of the water.

The measurer shall make sure that the buoyancy compartments and their covers as well as drain plugs are safely fastened or, if equipped with air inflated buoyancy, that there are no visible signs of deflation, deterioration or damage.
Section I – Templates

I.1 TEMPLATES

- SKEG TEMPLATE
- INNER UNIT PROFILE
- TRANSON BOTTOM SHAPE TEMPLATE
- OUTER UNIT PROFILE
- TEMPLATE FOR STEM AT FMP1
- TEMPLATE FOR STEM AT FMP2
- RUBBING STRAKE TEMPLATE

Vaurien Class Rules 2009